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O U T P U T  F E E D B A C K  CONTROL OF ROTATING DISK V I B R A T I O N S  

Chul-Soo Kim* and Chong-Won Lee* 

(Recei~,ed April 1l, 1988) 

Output feedback control of rotating disk vibrations is investigated. A polynomial equation, which determines the closed-loop 
system poles, is derived in wave coordinates and the approximate solutions for each wave are provided. The closed-loop system 
characteristics are analyzed in relation to the P-D gains and the sensor-actuator location, utilizing the approximate solutions of 
the closed-loop poles. Analysis of the closed-loop system in case of the half-clamped disk is also performed, with the gains and 
location varied. 
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1. INTRODUCTION 

Vibration control of rotating disks has attracted the atten- 
tion of many investigators in recent years especially in the 
fields of circular saws and computer memory disks in an 
attempt to reduce the vibration during operation(Ellis and 
Mote, 1979, Radcliffe and Mote, 1983, Iwan and Moeller, 1976, 
Cho and Cho, 1981, Kim and Lee 1988, Byun and Lee 1988). In 
1979, Ellis and Mote first performed active control to reduce 
the circular disk vibration, in which proportional and deriva- 
tive control was implemented employing a pair of electro- 
magnetic actuators and a displacement sensor. Their works, 
however, were limited to some experimental results witt~ut 
deep comprehension of the closed-loop system characteris- 
tics, although the roles of proportional and derivative control 
gains in rotating disks differ from those in stationary disks. 

Unlike nonrotating flexible systems, modal distributions of 
a rotating disk are characterized by pairs of waves propagat- 
ing in the opposite directions along the periphery of the disk. 
The waves propagating in the direction and in the opposite 
direction of disk rotation are called forward and backward 
travelling waves, respectively. The frequencies of both trav- 
elling waves seen by a stationary observer change as the disk 
rotation speed increases, the frequency of the forward travel- 
ling wave being increased and that of the backward travel- 
ling wave being decreased(Mote, 1970). As reported in the 
literature(Mote and Holoyen, 1975), the backward travelling 
waves of low frequencies are important to the disk vibration. 
Hence, vibration control of rotating disk often aims at sup- 
pressing the lower backward travelling waves. However, as a 
result, the control efforts concentrate in forward travelling 
waves of high frequencies, which may result in instability of 
the closed-loop system in case that the phase-shift at high 
frequency exists. 
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In this paper, we will investigate the stability of the rotat- 
ing disk under P-D control action and the roles of control 
gains about each travelling wave with the aid of the approxi- 
mate solutions. In addition, the analysis of the roles of each 
control gain associated with the sensor location is included. 
To obtain the approximate solutions, it requires the state 
space formulation represented in wave coordinates, which is 
derived by our previous works(Kim and Lee 1988), rather 
than the conventional state space formulation in which both 
travelling waves are inherently coupled. It is summarized in 
the next section. 

2. EQUATION OF MOTION IN 
MODAL STATE SPACE 

Cr a uniform, annular disk with clamped inner radius 
R =  a and free outer radius R = b  as shown in Fig. 1. If the 
transverse displacement W (R, ~?, t) of the disk is small and 
the disk is slightly damped, then the equation of motion of the 
disk subject to Q(R ,  (J, l ) ,  the transverse excitation force 
per unit area, is given in a non-dimensionalized form as(Byun 
and Lee 1988) 

stationary 
frame 

Fig. 1 Configuration of a centrally clamped disk 
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w , ~ + 2 a w , ~ +  A o w =  q (r, 6, r) 

where 

E h 2 V~ 
Ao= 3p (1 - v 2) b4/do 
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(1) 

Here nondimensional parameters are the displacement w= 
W / b ,  the radius r = R/b ,  the time r- /~,0t  and the transverse 
excitation q -  Q/2ohb,u2o. And to is the density of the disk, E 
the elastic modulus, h the half-thickness, v Poisson's ratio, 
the damping coefficient of the disk, #,o the natural frequency 
of the non-rotating disk corresponding to the vibration mode 
with one nodal diameter and zero nodal circle, and R and 
are the polar coordinates of a point on the disk. 

As the disk rotates at the rotational speed ~o,, the external 
force may be treated as a moving load with the angular 
velocity of -~ot  with respect to the rotating(body fixed) 
coordinates. The moving load problem(Eq. 1) can be transfor- 
med into the rotating disk problem subjected to the station- 
ary load(Iwan and Moeller, 1976), using the relationships 
between the rotating(body fixed) coordinates(r, 0) and the 
stationary(inertial) coordinates (r, p), 

9 = 0 + f ~ r  
W,r = v , r + ~ v ,  
W, ~ = v ,  ~+2~v ,  ~,+~2v, ~, 

(2) 

where v is the dimensionless transverse displacement, 9 the 
angular position in the inertial coordinates and f~=fl~ot//~10 
the nondimensional rotational speed. Substituting Eq. (2) into 
Eq. (1), the equation of motion is rewritten as 

v, ~+2~v ,  : ,+~2v,  ,~+ Aov+ 2a(v ,  , + ~ v ,  ~) 
= f ( r ,  ~, r) (3) 

where f is the dimensionless control force in the inertial 
coordinates (r, e).  

Eq. (3) can be written in state space as, when f = 0, 

2~(r) = Aoxv(r) (4) 

where xv(r )={~(r ' ( '  " ' r )  } 
�9 ~ �9 ~ r )  

0 1 

and A ~ : [ _  Ao_f12 ~ 2 -  2a g~_3 _ 2 [ 1 ~ - - 2 a ]  
O9 O~ 

The response of Eq. (4) can be represented by the complex 
series expansion(Kim and Lee, 1988) 

where 

and 

X v =  ~ r b t b  + LC,~,,9,~. cJ~.~bs @Cran~mn-~'-b b Cmn~Jmn]f f ( 5 )  
m,n ~o 

~ Vmn 

A~,, = - a + j ( m[2-- co~.a) , dg,, = -- ce + j ( mf~ + w=,,d) 
2 2 2 

O)mnd COmn q- Ol 

1 - j m r  n l 

Vm~(r. 9)=-2-e K.~. tr)  

k~,. and Ore., i = b ,  f ,  are the eigenvalues and the Here, 

corresponding eigenvectors of A~, respectively, and m, n 
denote the number of nodal diameters and nodal circles, 
respectively, and the superscripts b and f denote the back- 
ward and forward travelling waves, respectively, o)~, is the 
natural frequency of (m, n) mode in body-fixed coordinates, 
and R~,,(r)  is the radial mode shape function, which is 
normalized as 

f f ~  r R ~ . ( r )  R l . ( r ) d r : l & ~  (6) 

The adjoint, A;, of A~ is found to be 

A; - -  ~ 32 a 
Ao+~  ~ - w - 2 a f ~ -  2[I - 2 a  

with respect to the energy inner product 

<{~, ~}, { ~ , j  >E=<Aov,v>+<v,~+Ilv ,~ ,v ,~+f lv ,~> 

(7) 

where the inner product is defined as 

< U, V> = VrUrdpdr  (8) 
;b 

The two terms in the right hand side of Eq. (7) then corre- 
spond to the potential and kinetic lmergy. The eigenvectors 
associated with A~* are obtained to be 

where 1 / K  = w ~ . .  + j a w ~ . . .  The obtained eigenvectors of A~ 
and A; may be biorthonormalized such that 

i <AvCmn, s r = A ~. 6mpS.q$,j 
< ~ ,  ('~q>~ = ~mt~.q&~, i , j  = b, f  

(9) 

3. CONTROL SYSTEM AND 
CLOSED-LOOP POLES 

In a case when the control system has one pointwise 
actuator located at the point(ra, q~a) and one pointwise 
displacement and one pointwise velocity sensors located at 
the same point(r , ,  9~), the control force f and the mea- 
sured output vector y may be expressed, respectively, as 

f ( r ,  9, r ) : F ( r ) a ( f ~ f ~ ) 6  ( ~ - g a )  (I0) 

and 

= tv(rs ,gs ,r )  
y ( r )  t b (rs,~os,r) } (11) 

Here, we may assume 9a=0, without loss of generality, 
because only the relative position angle between the actuator 
and the sensors is meaningful. If we further assume that ra = 
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r, = r0, then the open-loop system is represented in state space 
a s ,  

x~(r) = A~x~(r) + B u ( r )  (12) 

where, 

B = (0, ~)) ~ 

u( r )  = F ( r )  

Also, the conventional P-D control law with negative output 
feedback can be written as 

equation, which is almost impossible. In order to obtain 
approximate solutions, a reduced order model, consisting of 
N modes(N pairs of backward and forward travelling 
waves) with zero nodal circle dominating the vibration, is 
treated in this work. In practice, the rotating disk vibration is 
not likely to be dominated by the modes with nodal circles in 
case of the centrally-clamped disk. For example, the saw 
transverse vibration is most often dominated by 0-6 nodal 
diameter modes with zero nodal circle. The modes with one 
or more nodal circles are unlikely to be excited in the cutting 
process. Thus Eq. (18) can be reduced to 

Rm(n) t i e  - h~(A)  = 1 +  ~ z . . . .  ~, 

+ ~ ( k ~ + k a . ~ ) . _  -P A-A{  (k~+kad~m) 
je: me* ] 

+ ~- - -~  (k~ + k~A ~) I (19) 
J 

u ( r ) = - ( k ,  ka)y(r )  (14) 

where the positive constants k~, ka are the proportional and 
derivative feedback gains, respectively. Combining Eqs. (12), 
(13) and (14), we obtain the closed-loop equation. 

fc~= (Ao+ B< �9 G>)x~ (15) 

where G = - (k~a' k,~d). From the results of degenerate 
perturl~ations (Kato, 1966), we see that the closed-loop 
poles are determined by the zeros of the polynomial 

h(A)=l+<(A~-A)  ~B, G> (16) 

Here, we note that the resolvent R (A, A o) becomes 

R(A, AD ( A - A D - '  

: < " , Wren  E ' # m n  
m 0 

+ "  < " , W r e n  E ' t a m n  

+ ~_1#~.<..,.. ~ / �9  r 1 6 2  

+ ~ _ < .  #,s > x s  ] 
~ m n  E w m n j  (17) 

Thus, Eq. (16) becomes 

h(A) = 1 +  <B Win,, e ~',., G> 
m 0 

+ X_~m <B,r162 G> 

1+ ~, R2~(r~ je-~m'" = ~ - - ~ - ( k e + k a A ~ )  
m,~--0 4w~ ,:t- 2mn 

J c/'~s fs  + .~__~. (k~+kaA m.)] (18) 

Here and henceforth, the subscript n = 0  is omitted for 
notational simplicity. 

Although the exact solutions of Eq. (19) can be numerically 
calculated, it is worth obtaining the approximite solutions of 
Eq. (19) in order to look into the pole shifting behaviors due 
to control. Assuming the modeled waves are not severely 
overlapped and the eigenvalue perturbations due to control 
are fairly small, the approximate eigenvalues a~ and as 
corresponding to the unperturbed eigenvalues ,t~ and A~ of 
(m, 0) mode, respectively, are determined from 

b - -  b - J m ~ s  b am--Am--Je P~(k~+k~A~) (20) 

and 

m - - l L m ~ j ~  x m (21) 

where 

2.o  /___ 
. . . .  ', - - / [~ ; ,0 )  

',, \ '\ 

t- 
IP 
O" 
I- ca,- 

~ 0 . 5  

io 
z 

~ , . . � 9  ",14,0}\ 
" . .% "< " (5,01 

..,, -~. 
-,',, \ -..,. 

forward ", "i,', ', /, 

.... bmckwmrd , ~ , z,, 

i",":'. " , I /  
n - 0 . 3 7  : ",,\ "'~l( ,' 

0 . 2  0 . 4  O.S 

In order to fully understand the nature of the closed-loop 
system, we should solve for the zeros of this polynomial 

Rotetion speed fl 
Fig. 2 The behavior of the observed natural frequencies w.r.t.~ 
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R~(ro) 

The first order approximate bound of the approximate 
eigenvalues becomes(Kim and Lee, 1988) 

where ys are the eigenvalues of the closed-loop system, Eq. 
(19), and h;v( �9 ) is the derivative of hN ( �9 ), 

Now, we will investigate the effects of P-D gains and 
sensor location on the stability of the half-clamped disk with 
ro = 1, a = 0.005 and N = 6, based upon the above approximate 
solutions. The methodology, which will be demonstrated in 
the next section, can be easily extended to the general 
centrally-clamped disk problems. The rotating disk with the 
clamping ratio of 0.5(=a/b) has the lowest critical speed of 
about 0.466~ at which the frequency of backward travelling 
wave of (3,0) mode becomes zero as shown in Fig. 2. 

4. ROLES OF P-D GAINS AND 
SENSOR LOCATION 

To avoid too much complexity in analysis, P and D con- 
trols will be considered separately. In case of P-control(kp~ 
0, ke=0), the approximate eigenvalues of the closed-loop 
system, Eqs. (20) and (21), become 

b - -  b " - i m P s  a ~ -  A,~- le  P~kp (22) 

and 

a s  (23) 

When ps =0, i.e.,the actuator and sensor locations are identi- 

Table 1 Nondimensionalized natural frequencies of the half- 
clamped disk at the rotation speed ~=0.37 

(m,n)Mode Backward 
(1, 0) 0.63 
(2, 0) 0.3664 
(3, 0) 0.2867 

Forward 
1.37 
1,8464 
2.5067 

cal, Eqs. (22) and (23) become 

ag =libra - /Pmkp= - a + / ( rnf~- (o'~) 
a{ = A{ + jP~k~= - ol + j ( m~2 + co'~a) 

(24) 
(25) 

where w'~=a) ,~+Pmkp ,  which can be interpreted as the 
controlled natural frequency of (m, 0) mode of the disk in the 
body fixed coordinates. That is, the natural frequency of (m, 
0) mode in body fixed coordinates and, therefore, the critical 
speed increases as k~ increases. Fig. 3 shows the variation of 
the natural frequencies of both travelling waves of (3, 0) mode 
in the inertial coordinates as I2 increases when kp is fixed as 
0.2 and the other modes are not included to avoid the com. 
plexity in the calculation of eigenvalues due to the mode 
coupling. As shown in Fig. 3, the natural frequencies of both 
travelling waves increase below the ~ritical speed, but the 
natural frequency of the backward travelling wave decreases 
beyond a rotating speed slightly over the critical speed. In 
addition, we note that, as com~--*oo, Pmkp~O and Oamd--~Oamd for 
fixed k~, i.e., the higher modes in stationary disks are un- 
affected by the proportional control. 

Next, we consider the case when q~s~:0 to find the role of 
P-gain associated with sensor location. Eqs. (22) and (23) can 
be rewritten as 

a ~ = - a - P ~ k p s i n  m g ~ - j ( c o ~ a - m C 2 + P ~ k p c o s  mg,)  

(26) 
a ~ = - a + P m k p s i n  mg~+j (co~d+mf l+P~kpcos  mg~) 

(27) 

l m ( / )  ~ sJ" 

S 2 

S'"" Controlled 
. { , ~ ,  . . . .  Oncontrolled 

I 

" .  sp F 

o \ < Z  
0 0 . 2  0 . 4  0 . 6  

Rotational Speed 

Lociofnaturalfrequenciesof(3,0) mode w.r.t.~ forthe 
ca~ when(3,0)modeisonlyconsidered;kp=0.2 

Fig. 3 

Here, notice that the second terms in above equations possess 

True 
Approx. 

( 3 , 0 ) ~  

0 lm(~t ) 

(2,0)~ 
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thecasewhen(3,0) modeisonlyconsideredandk~=0.1 

the opposite sign, which are closely related to the damping on 
the stability of traw~lling waves. For example, the damping of 
backward travelling waves increases, but that of forward 
travelling waves decreases for the modes satisfying 0 < rnr < 
z. For the nondimensional rotation speed fl--0.37(about 80% 
of the critical speed), the nondimensionalized natural fre- 
quencies of the travelling waves with 1 to 3 nodal diameters 
and zero nodal c i r c l e  are tabulated in Table 1. Figs. 4 and 5 
show the loci of the closed-loop eigenvalues of the modes with 
1 to 3 nodal diameters and zero nodal circle as the propor- 
tional gain k~ increases when the derivative gain kd is zero 
and the sensor location ~, is equal to 10 and -10  degrees, 
respectively. The solid lines are the loci of the closed-loop 
eigenvalues calculated from Eq. (19) when N = 6 ,  and the 
dashed lines are the loci of the closed-loop eigenvalues 
obtained from the approximate solutions, Eqs. (26) and (27). 
As shown in Figs. 4 and 5, the true solutions have the same 
trends as the approximate solutions up to kp=0.]. In this 
range of kp, the forward waves may become unstable for the 
sensor location ~,::10 and the backward waves tend to 
become unstable for ~ , = - 1 0  as the proportional gain kp 
initially increases. 

Now we consider the case of D-control(k~ ~ 0, kp = 0). In this 
case, the approximate eigenvalues of the closed-loop system, 
Eqs. (20) and (21), become 

a ~ = A ~ - i P , ~ k ~ A ~  C -jm*s (28) 

and 

• f - - . ] f  q - 4 D  1~ ] f  ~ . imps  
m - - t ~ m  jamt~d/ tme . :~  (29) 

When ~,~ = 0, Eqs. (28) and (29) become 

= - a - Pmkd  (co,.a - m i l )  - j  (wren - m f l  - a P m k a )  

(30) 

a~ = , E  + i P m k ~ A {  

= - a - P ~ k a  (wmd + m f l )  +) '  (a~,d  + m t l -  a P m k d )  

(31) 

Here, we can see that, for fixed k~, P,~k~ ( w m a - m f l )  in Eq. 
(30) decreases, but P ~ k ~  ( w , ~ a +  mr2)  in Eq. (31) increases as 
the rotation speed of the disk increases up to the critical 
speed. In other words, the dampings (negative real parts of 
the eigenvalues) of the controlled forward (backward) waves 
are increased(decreased) as the rotation speed of the disk 
increases, in the derivative control of rotating disks, implying 
that the control efforts are put on the forward travelling 
waves not dominant in the disk vibration. Fig. 6 shows the 
real part of loci of the closed-loop eigenvalues of (3, 0) mode 
as El increases when kd is 0.1 and the other modes are not 
included in calculation of the closed-loop eigenvalues as the 
same as in Fig. 3. As shown in F ig  6, the damping of the 
forward travelling wave of (3, 0) mode increases, but that of 
the backward travelling wave of (3, 0) mode decreases, 
becoming unstable. 

In case of ~s ~: 0, Eqs. (28) and (29) can be rewritten, respec- 
tively, as 

a~ = - a - Pmka  [ (co~a - roll)cos m~v~ - asin m ~ ]  
- j [  w . ,a  - m l l -  a P m k ~ c o s m ~  

- ( w ~ a -  m I l ) P ~ k a s i n  m r  (32) 

aim = - a - P ~ k a [  ( w m . + m f l ) c o s  m r  sin m~s] 
+ j I w , . a  + m i l  - aP ,~kacosmqD.  

+ (co.,d + mid P,.kasin mg.] (33) 

Here, the second terms in the above equations suggest that 
the modes corresponding to miami>z/2 become unstable as 
k~ increases, as already discussed in(Ellis and Mote, 1979). In 
particular, the forward travelling waves become more easily 
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Fig. 7 Root loci of (1, 0), (2, 0) and (3, 0) modes as kd increases 
when 9~=10 degrees (1 ; k~-0.1, 2; kd=0.2) 
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unstable. Figs. 7 and 8 show the loci of the closed-loop 
eigenvalues of the modes with 1 to 3 nodal diameters and zero 
nodal circle as the derivative gain ka increases when the 
proportional gain kp is zero and the sensor location is 10 
and -10  degrees, respectively. As well as in Figs. (4) and (5), 
the solid lines are the loci of the closed-loop eigenvalues 
calculated from Eq. (19) when N =6, and the dashed lines are 
the loci of the closed-loop eigenvalues obtained from the 
approximate solutions, Eqs. (30) and (31). As shown in Figs. 7 
and 8, the true solutions have the same trends as the approxi- 

mate solutions up to ke--0.1. In this range of k~, the dampings 
of the forward travelling waves increase more rapidly than 
the backward travelling waves as expected in the analysis. 

5. C O N C L U S I O N S  

Output feedback control of rotating disk vibrations is 
investigated and the closed-loop system characteristics are 
analyzed in relation to the P-D gains and the sensor-actuator 
location, utilizing approximate solutions. Eigenvalue ana- 
lyses in case of the half-clamped disk are also performed, 
with the gains and location varied. The conclusions can be 
made as follows: 

(1) P-control tends to change the dampings of the forward 
and backward travelling waves in opposite ways. That is, for 

small positive ~.~, the dampings of the backward travelling 
waves of low frequencies, often considered important in the 
disk vibration, tend to increase as the proportional gain 
increases. However, for small negative ~os, the dampings of 
the backward travelling waves of low frequencies tend to 
decrease as the proportional gain increases. 

(2) D-control is likely to increase the dampings of the 
forward travelling waves more effectively than the backward 
travelling waves for small D-gain and small I+,,I. This fact 
becomes more clear as the rotation speed increases. There- 
fore, D-control may result in an inefficient control perfor- 
mance when the backward travelling waves are of primary 
interest in the rotating disk vibration control .problems. 
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